3D CBIR with sparse coding for image-guided neurosurgery
نویسندگان
چکیده
This research takes an application-specific approach to investigate, extend and implement the state of the art in the fields of both visual information retrieval and machine learning, bridging the gap between theoretical models and real world applications. During an image-guided neurosurgery, path planning remains the foremost and hence the most important step to perform an operation and ensures the maximum resection of an intended target and minimum sacrifice of health tissues. In this investigation, the technique of content-based image retrieval (CBIR) coupled with machine learning algorithms are exploited in designing a computer aided path planning system (CAP) to assist junior doctors in planning surgical paths while sustaining the highest precision. Specifically, after evaluation of approaches of sparse coding and K-means in constructing a codebook, the model of sparse codes of 3D SIFT has been furthered and thereafter employed for retrieving, The novelty of this work lies in the fact that not only the existing algorithms for 2D images have been successfully extended into 3D space, leading to promising results, but also the application of CBIR, that is mainly in a research realm, to a clinical sector can be achieved by the integration with machine learning techniques. Comparison with the other four popular existing methods is also conducted, which demonstrates that with the implementation of sparse coding, all methods give better retrieval results than without while constituting the codebook, implying the significant contribution of machine learning techniques.
منابع مشابه
Texture-based 3d Image Retrieval for Medical Applications
Although content-based image retrieval (CBIR) has been researched for more than two decades, retrieving 3D datasets has just begun recently and is mainly focusing on 3D shapes, i.e., iso-surfaces of objects. This is in part due to the fact that the major application area of CBIR is to those images available over the internet. In the medical domain however, more and more images are in three or m...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملNovel Method for 3D Objects Retrieval
Access to appropriate information is a fundamental necessity in the modern society. Recent years have seen a rapid growth in use of digital images. To retrieve similar images from a database Content Based Image Retrieval (CBIR) system is used. Shape is most widely used feature in CBIR system. Among various approaches of shape retrieval, edge based shape descriptors are the most commonly been us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 93 شماره
صفحات -
تاریخ انتشار 2013